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The determination of macromolecular structures from experimental data is an ill-posed inverse problem.
Nevertheless, conventional techniques to structure determination attempt an inversion of the data by minimi-
zation of a target function. This approach leads to problems if the data are sparse, noisy, heterogeneous, or
difficult to describe theoretically. We propose here to view biomolecular structure determination as an inference
rather than an inversion problem. Probability theory then offers a consistent formalism to solve any structure
determination problem: We use Bayes’ theorem to derive a probability distribution for the atomic coordinates
and all additional unknowns. This distribution represents the complete information contained in the data and
can be analyzed numerically by Markov chain Monte Carlo sampling techniques. We apply our method to data
obtained from a nuclear magnetic resonance experiment and discuss the estimation of theory parameters.
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I. INTRODUCTION

Biomolecules such as proteins fold into thermodynami-
cally stable structures that are crucial for their biological
function. To date, x-ray crystallography and nuclear mag-
netic resonance �NMR� spectroscopy are the only experi-
mental methods that permit the determination of macromo-
lecular structures with atomic resolution routinely. Both
techniques measure the molecule’s response to an externally
controlled perturbation, such as the intensities in a x-ray dif-
fraction pattern or the cross peaks in a nuclear Overhauser
effect spectroscopy �NOESY� experiment �1�. Analysis of a
measurement y requires a forward model f that predicts the
response from a given conformation � :y= f���. The structure
determination problem is to determine the unknown structure
from measurements �yi�; i.e., to go in the inverse direction.

Ideally, it holds that yi= f i��� for the true structure, and we
would have to solve a system of nonlinear equations in order
to determine its unknown coordinates. This is commonly at-
tempted �2� by minimizing a target function of the form

G��� = E��� + �F��� , �1�

where F assesses the match between predicted and observed
data, and � is an unknown positive weighting constant. In
case of noiseless data, the penalty term F is minimal for
conformations that exactly satisfy the nonlinear equations.
The potential energy E is a regularizer that accounts for the
underdeterminedness of the inverse problem.

The analysis of realistic data, however, is more involved
due to several reasons.

First, experimental data are incomplete. In NMR spectros-
copy, for instance, the most informative measurands are di-
polar relaxation rates �3�. These are observable for protons
close in space and thus constitute only a small subset of all
interatomic distances. Thus, the experiment provides incom-
plete information in the sense that the data can be explained
by multiple conformations.

Second, the forward model almost always involves addi-
tional quantities � that are not measurable; i.e., yi= f i�� ;��.
The parametrization � of the forward model might not be of
primary interest, yet it is essential to establish the relation
between atomic coordinates and the measurands. Examples
are the phases in x-ray crystallography or the scale of cross-
relaxation rates in NMR.

Third, the data are subject to errors. Typically, errors are
caused by quantities that vary uncontrollably during experi-
mentation, and by the forward model which is often based on
approximations. Prior to analysis, data are often prepro-
cessed, which can introduce additional uncertainty. In prac-
tice, the various factors leading to deviations of the observed
from the ideal data are unknown. However, they affect our
choice of the weighting constant � in the hybrid energy �1�,
since the quality of the data determines how much we can
trust them.

Ad hoc solutions to overcome these difficulties have been
proposed. Heuristics like cross validation �4,5�, for example,
are utilized to judge the quality of structures and to deter-
mine the unknown weighting �. In case of heterogeneous or
noisy data, however, cross validation becomes time consum-
ing and unstable. Empirical methods are also employed to
determine the parametrization of the forward model �the cali-
bration of NOESY signals �6�, for example, determines the
unknown scale of cross-relaxation rates�. A further difficulty
is to assess the reliability of the reconstructed structure.
Since the optimization framework lacks a means to quantify
uncertainty, it is not possible to define statistically meaning-
ful error bars. Usually, the reliability of NMR structures is
estimated by running the optimization algorithm several
times, each time from random initial conditions. The result-
ing “ensemble” is utilized like a statistical sample to estimate
the precision of the coordinates. However, since such an en-
semble mainly reflects properties of the minimization proto-
col, this approach is problematic.

II. INFERENTIAL STRUCTURE DETERMINATION

The difficulties rendering structure determination by in-
version an ill-posed problem are due to the uncertainty and*Electronic address: nilges@pasteur.fr
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incompleteness of the information provided by the experi-
ment. Structure determination requires reasoning from partial
knowledge and is therefore an inference problem. Since in-
complete information entails uncertain conclusions, the deri-
vation of a single and unique structure is, as a matter of
principle, impossible. However, this is what one tries when
minimizing the hybrid energy: One attempts to invert the
equations yi= f i��� numerically.

The optimization approach is inadequate because it ne-
glects the ambiguity inherent in the data analysis or at best
treats it in an ad hoc fashion. Instead, we are seeking a means
to represent this ambiguity in the most honest way. Cox
proved �7� that the only way to quantify uncertainty system-
atically and consistently is through probabilities. In this view,
probability theory is an extension to deductive logic as it
provides rules for inductive reasoning �8�. Probabilities be-
come degrees of belief that measure the validity of a conclu-
sion. They span a continuum of truth values thereby extend-
ing deductive logic. Probabilities always refer to what we
already know. Therefore, only a conditional probability
P�H � I� is well-defined: It quantifies the plausiblity of a hy-
pothesis H in the context of information I. This is radically
opposed to the frequentist interpretation where
probabilities are defined through the long-run behavior of
“random variables.”

A hypothesis can be any statement which is compliant
with the Boolean algebra of propositions. The demand for
consistency with the rules of propositional logic imposes a
structure on the plausibility measure: the Algebra of Prob-
able Inference �7�. Its fundamental relationships are the sum

rule: P�A � I�+ P�Ā � I�=1 and the product rule: P�A ,B � I�
= P�A �B , I�P�B � I�.

In structure determination we are concerned with propo-
sitions: “data D were recorded” and “during the experiment
the molecular structure was �” symbolized through D and �,
respectively. What do the data tell us about the unknown
structure? The complete answer to this question is the con-
ditional probability P�� �D , I�. The interpretation of the data
always needs to be based on some model P�D �� , I�, the like-
lihood, which establishes the connection between theory and
experiment. Bayes’ theorem �8�, a direct consequence of the
product rule, inverts this probability

P���D,I� = P���I�
P�D��,I�
P�D�I�

. �2�

Here, the prior probability P�� � I� occurs naturally. It repre-
sents our background knowledge about the molecular confor-
mation before experimentation. The probability P�D � I�
serves here as a normalization constant which will not be
important for what follows. Bayes’ theorem reads: The like-
lihood for observing D has to be weighted with the prior
probability for � to yield the posterior probability P�� �D , I�
which describes our knowledge about � after the experiment.
Thus, probability theory solves any inverse problem in bio-
molecular structure determination in a well-defined way by
ranking all possible conformations according to their poste-
rior probabilities. The case of exactly invertible data is con-
tained in this formulation as a limiting case.

We propose to solve any structure determination problem
by calculating the posterior probability P�� �D , I� and by us-
ing this probability to quantify any hypothesis about the un-
known structure. In order to distinguish our principle from
the conventional minimization approach, we coin it inferen-
tial structure determination �ISD� �9�.

III. MODELING MACROMOLECULAR STRUCTURAL
DATA

In order to infer the structure of a biomolecule from given
data, we first need to set up the likelihood and the prior
probability. Interactions between the atoms restrict the pos-
sible conformations of a molecule. We incorporate this prior
knowledge by means of a force field E��� which quantifies
intramolecular interactions. Provided the experimental data
set is sufficiently complete, solvent interactions have only a
minor influence on the overall quality of NMR structures
�10� and will therefore be neglected. Assuming that experi-
ments are carried out at a constant temperature �−1 and fol-
lowing the principle of maximum entropy �11�, the canonical
ensemble

���� =
1

Z���
exp�− �E���� �3�

represents our prior knowledge: dP�� � I�=����d�.
The specific form of the likelihood depends on the nature

of the data and, as outlined above, generally consists of two
constituents: A forward model ŷi= f i�� ;�� relates the confor-
mational degrees of freedom � to the expected observations
ŷi and possibly involves nonmeasurable parameters �. An
error model g�yi ; ŷi ,�� accounts for deviations of the ob-
served from the expected data. The parametrization of the
error model introduces a second kind of unknowns, the “er-
rors” �. Given n independent measurements D= �y1 , . . . ,yn�,
we are therefore dealing with an extended likelihood

P�D��,�,�,I� = �
i=1

n

g„yi; f i��,��,�… �4�

instead of P�D �� , I�. In order to evaluate the likelihood, the
parametrization of the forward model and the error model ��
and �, respectively� need to be known. Hence, both quanti-
ties appear on the conditioning side in Eq. �4�. For given data
D, we use the notation L�� ,� ,��� P�D �� ,� ,� , I� to indi-
cate, that we view the density �4� as a function of the hy-
pothesis parameters.

The auxiliary parameters � and � need to be introduced to
describe the data appropriately; in statistical parlance such
quantities are called nuisance parameters �8�. Since it is of-
ten unclear how to set such unknowns, the treatment of nui-
sance parameters poses a great problem to optimization al-
gorithms. Even if these parameters were to be optimized
during structure calculation, empirical rules are still needed
since an equivalent of the extended likelihood is missing:
The hybrid energy �1� is a target function for the coordinates
only.

Probability theory, in contrast, permits the determination
of any unknown quantity. All we need is experimental evi-
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dence that logically depends on the respective parameter. Ap-
plication of Bayes’ theorem then immediately yields an ex-
tended posterior density which allows us to do inferences on
�, �, and �

p��,�,�� � L��,�,�����,�,�� . �5�

The posterior density �5� is a joint probability which simul-
taneously determines all unknowns. Here, ��� ,� ,�� denotes
the most general prior distribution defined on the joint hy-
pothesis space spanned by the parameters �, �, and �. In
many practical problems one can assume mutual indepen-
dence of the nuisance parameters and the coordinates. In this
case the prior distribution factorizes: ��� ,� ,��
=������������. However, in some applications this as-
sumption is inadequate, as, for example, in x-ray crystallog-
raphy where the phases depend on the structure.

Formally, we can eliminate uninteresting parameters via
integration. We use this so-called marginalization rule �8� to
arrive at a posterior distribution which depends on the atomic
coordinates only

p��� �	 d� d�L��,�,�����,�,�� . �6�

We can just as well reduce our hypothesis space to the mac-
romolecular configuration space by defining the integrated
likelihood function

L��� =	 d� d�L��,�,�����,���� �7�

with the conditional prior density being ��� ,� ���
=��� ,� ,�� /����. The function L��� is a sort of “effective
likelihood” that one obtains when considering the nuisance
parameters � and � as “hidden variables.” Using Eq. �7�, we
can apply Bayes’ theorem in conformational space and arrive
at the same result as through elimination of the nuisance
parameters in the posterior distribution �Eq. �6��.

IV. APPLICATION TO DISTANCE DATA MEASURED BY
NMR

As an application of ISD, we analyse dipolar relaxation
rates measured in the NOESY experiment �1�. NOESY is a
multidimensional pulsed NMR experiment that measures the
exchange of magnetization due to dipolar relaxation. Each
resonance in a NOESY spectrum can be assigned to a pair of
interacting spins k and l. In a first order approximation, the
volume Vkl of a resonance peak is proportional to the inverse
sixth power of the distance rkl of the two spins �1�. This is
due to the r−3 dependence of dipolar interactions and to the
fact that relaxation is a second order effect. Thus, our for-
ward model to describe the observed volume Vkl is

Vkl��;�� = �rkl
−6��� , �8�

where � denotes a positive scaling factor. This model is
called the isolated spin-pair approximation �ISPA� �12� be-
cause it reduces the magnitization transfer in a multispin sys-
tem to the transfer between pairs of spins.

The ISPA is an approximation. Besides spin diffusion �1�,
it neglects the internal flexibility of the macromolecule �13�.
We therefore expect observed volumes to deviate from those
predicted by relation �8� not so much because of experimen-
tal errors but due to our imprecise forward model. If one
neglects the dynamics of the molecule, peak volumes are
positive. It is therefore convenient to describe these devia-
tions using a lognormal distribution �14�

g�Vkl;V̂kl,�� =
1


2��2Vkl

exp�−
1

2�2 ln2�V̂kl/Vkl�� , �9�

defined on the positive axis �Vkl	0� and involving an error
parameter �	0. Our error model is a conservative choice
and can be motivated by the principle of maximum entropy.
Since peak volumes are non-negative their errors are multi-
plicative. Assuming no systematic error and knowledge of
the variance of the logarithmic errors, the lognormal distri-
bution results as the least biased error model.

Our data comprise n peak volumes Vkl, where each peak
has been assigned to a pair of interacting spins k and l. The
complete likelihood function �4� for NOESY measurements
is

L��,�,�� � �−n exp
−
n

2�2 �ln2�v���/�� + s2����� , �10�

where we introduced the statistics

v��� = ��
�k,l�

Vklrkl
6 ����1/n

, �11a�

s��� = �1

n
�
�k,l�

ln2�Vklrkl
6 ���/v�����1/2

; �11b�

v��� is the geometric average of the ratios of the measured
and the uncalibrated predicted volumes, s��� is the standard
deviation of the normalized logarithmic ratios. The sum in-
volves those n pairs of protons for which a NOESY cross
peak was observed.

This model requires two nuisance parameters, � and �.
Since knowledge of the molecular conformation tells us
nothing about the calibration factor � or the error �, our prior
distribution factorizes

���,�,�� = ������������ =
1

��

1

Z���
exp�− �E���� .

�12�

The canonical ensemble makes up the conformational part of
the prior. We choose Jeffreys’ prior �15� to describe our
knowledge of both nuisance parameters � and �. Jeffreys’
priors represent the fact that we know nothing about � and �
except that both are scale parameters; i.e., the likelihood
would not change, if � and � were measured in different
units.

At this stage, it is instructive to compare our probabilistic
approach with conventional, minimization-based techniques.
The negative logarithm of the posterior distribution
p�� ,� ,�� may serve as a joint target function for the most
probable structure and the most probable values of � and �.
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In contrast, the hybrid energy �1� is restricted to conforma-
tional space and therefore serves as target function for the
coordinates only. A comparison of both target functions
yields the following analogies: The counterparts of the physi-
cal energy and the penalty term in Eq. �1� are the negative
logarithms of the prior probability and the likelihood func-
tion: E�−ln �, F�−ln L. The weight � is proportional to the
inverse squared error: ���−2. The hybrid energy, however,
lacks a term analoguous to the prior probabilities for � and �
and the normalization constant �−n stemming from the ex-
tended likelihood function �10�. In probabilistic modeling
these terms serve as regularizers and allow the determination
of � and � along with the conformationial degrees of free-
dom. Thus, hybrid energy minimization turns out to be a
special case of the Bayesian formulation. It is only valid in
cases where we dispose of prior knowledge about unknowns
of the forward model and about experimental errors.

For model �7� we can calculate the integrated likelihood
analytically:

L��� = �s����−�n−1�, �13�

which depends on the molecular conformation only through
the statistic s���. We can obtain this likelihood function when
setting �=v��� and �=s��� in the joint likelihood function
�10� and reducing the number of data by one. This shows that
estimation of the nuisance parameters correlates all measure-
ments at a cost of one measurement. Based on the integrated
likelihood �13�, we can define a target function which de-
pends on the coordinates only

− ln p��� = �n − 1�ln s��� + �E��� . �14�

Minimization of −ln p��� allows us to determine the most
probable structure without assuming knowledge of � and �.
This shows that inferential structure determination does not
contain free parameters but eliminates auxiliary quantities by
using the rules of probability calculus. In other words, we
can either use the extended posterior p�� ,� ,�� or the mar-
ginalized posterior p��� and obtain the same results.

V. STRUCTURE CALCULATION

If our aim is the structure of biological macromolecules
such as proteins, analytical investigations of the posterior
density become very complex, and we have to resort to nu-
merical methods. Any analysis based on the posterior density
boils down to the calculation of integrals of the form �8�

I�h� =	 d� d� d�h��,�,��p��,�,�� . �15�

If the hypothesis function h is independent of the nuisance
parameters, we can directly integrate over the marginalized
posterior p���. At present, the most powerful methods for
computing quantities of the form �15� are based on Markov
chain Monte Carlo �MCMC� algorithms �16�. These methods
construct a first order Markov process by sucessively apply-
ing a stochastic transition kernel. After a certain convergence
period, the Markov chain generates random samples from the
posterior distribution.

In our view, structure calculation amounts to the genera-
tion of random samples from the joint posterior density
p�� ,� ,��. This differs fundamentally from conventional
structure calculation algorithms based on nonlinear optimi-
zation. Posterior sampling not only identifies high-
probability modes in due proportion to each other but also
yields direct estimates of the precision of all hypothesis
parameters.

Our algorithm for generating posterior samples
���t� ,��t� ,��t�� uses a combination of three MCMC strategies.
The Gibbs sampling procedure �17� facilitates a split up of
the sampling scheme into three steps. Each parameter is
sampled sequentially conditioned on the current values of the
other parameters

��t+1� � p�����t�,��t�� ,

��t+1� � p�����t�,��t+1�� ,

��t+1� � p�����t+1�,��t+1�� . �16�

In order to apply the Gibbs sampling scheme, we must thus
be able to simulate the conditional posterior densities for the
nuisance parameters and the coordinates. For simple distri-
butions this can be done by using random number genera-
tors. However, for highly correlated parameters such as the
conformational degrees of freedom, more powerful methods
need to be employed.

Already the conformational prior ���� exhibits a compli-
cated topography with ridges and isolated peaks. Noncova-
lent interactions, for instance, penalize van der Waals over-
laps and correlate all parameters. We employ the hybrid
Monte Carlo �HMC� algorithm �18� to simulate the condi-
tional posterior in conformation space. The HMC method
uses molecular dynamics �MD� �19� to generate a candidate
conformation which is accepted according to the Metropolis
criterion �20�. The dynamics is defined by using the negative
logarithm of the conditional conformational posterior distri-
bution

− ln p����,�� = − ln L��,�,�� + �E��� �17�

as potential energy.
For realisitic biomolecular systems, the Gibbs sampler

�16� is likely to get stuck in high-probability modes and thus
fails to explore the entire parameter space. These modes cor-
respond to different configurations of the macromolecule that
fulfill the data comparably well. However, missing a high-
probability fold would bias our analysis.

A physical system that is trapped in a metastable state can
be melted by increasing the temperature. If the kinetic energy
is sufficiently high the system easily explores all regions of
the configuration space. The Replica-exchange Monte Carlo
method �21� exploits this observation: It considers a compos-
ite Markov chain comprising several noninteracting copies of
the system. Each of these “heat baths” is simulated at a dif-
ferent temperature. By exchanging configurations between
neighboring copies, the heat baths are coupled, which sig-
nificantly enhances the mobility of the individual Markov
chains.
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We introduce two “temperatures” �22�: A parameter �
weighs the likelihood, thereby controlling the contribution of
the data. A second parameter q determines the shape of the
conformational prior. Our heat baths are

f��,�,�;�,q� � �L��,�,�������;q��������� . �18�

The weight � varies between 0 and 1. Following Hansmann
and Okamoto �23�, we use Tsallis’ extension of the canonical
ensemble as conformational prior

���;q� � �1 + ��q − 1��E��� − Emin��−q/�q−1�. �19�

The parameter q
1 controls the degree of deformation; q
→1 restores the Boltzmann ensemble. The Tsallis ensemble
no longer suppresses high-energy configurations exponen-
tially. This allows atoms to pass through each other, which
facilitates large conformational changes. Our target distribu-
tion corresponds to �=q=1; i.e., p�� ,� ,��= f�� ,� ,� ;1 ,1�.
We introduce Tsallis’ ensemble merely for computational
reasons. The thermodynamic properties of the molecule are
still described by a Boltzmann ensemble.

VI. ANALYSIS OF A NOESY EXPERIMENT

We used the outlined approach to analyze NMR measure-
ments for the Tudor domain of the human Survival of Motor
Neuron �SMN� protein �24�. The Tudor domain consists of
56 amino acids �comprising 859 atoms� and exhibits a
�-barrel fold. At room temperature, bond lengths, bond
angles, and ring planarities show little variance. In good ap-
proximation we keep these parameters fixed and use the
force field of the empirical conformational energy program
for peptides �ECEPP/2� �25,26� to describe the covalent ge-
ometry of the polypeptide chain. In this case, 254 torsion
angles �= �� j� are the only degrees of freedom �27�. A repul-
sive potential approximates the Lennard-Jones potential and
describes non-bonded forces acting between atom k and l

Ekl��� =
ckl

2
��dkl − dkl����4, dkl��� � dkl

0, dkl��� 
 dkl
� . �20�

Values for force constants and minimum distances ckl and dkl,
respectively, were taken from the PROLSQ �28� x-ray refine-
ment program.

Two data sets were derived from NOESY spectra re-
corded for 13C and 15N edited protein samples �24�. The 13C

FIG. 1. Upper panel: trace of the negative
logarithm of the posterior distribution of all heat
baths. Lower panel: distributions of the negative
logarithms of the individual posterior densities.
The darkness of a histogram corresponds to the
position of its heat bath in the replica sequence.
Darker histograms correspond to lower
“temperatures.”

FIG. 2. Posterior samples of
spectral scales and errors of the
two data sets. Left panel: samples
of the spectral scales �C �black�
and �N �grey� drawn from the
joint posterior. Right panel: Poste-
rior samples of the error param-
eters �C �black� and �N �grey�.
The insets show the corresponding
histograms.
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data comprise nC=1444, the 15N data nN=431 assigned cross
peaks. In order to describe the data, we have to introduce
four nuisance parameters: two spectral scales �= ��C,�N�
and two errors �= ��C,�N�.

The conditional posterior densities for the nuisance pa-
rameters are the lognormal distribution and the gamma dis-
tribution �14�

� j � LN�ln v j���,� j
2/nj� , �21a�

� j
−2 � G�nj/2,� j

2��,� j�/2� , �21b�

with the goodness of fit for a single data set being � j
2�� ,� j�

=nj�ln2�v j��� /� j�+sj
2����. Random number generators for

these distributions exist and can readily be applied in the
Gibbs sampling scheme �16�. Torsion angle samples are ob-
tained by applying the HMC method to the conditional con-
formational posterior

p����,�� � exp�−
1

2 �
j=C,N

� j
2��,� j�/� j

2 − �E���� . �22�

Hamilton equations of motion were derived from
−ln p�� �� ,�� and integrated with the leapfrog algorithm
�29�. Our replica arrangement consists of 50 copies, simu-
lated at a temperature of 300 K with q ranging from 1.001 to
1.1 and � from 0.1 to 1.0. We ordered the heat baths such
that, in the first half of the arrangement, � was succesively

turned off. In the second half also nonbonded interactions
were switched off by increasing q �22�. In total, we per-
formed 13 000 replica transitions, each consisting of 25
HMC steps; the MD trajectories of HMC moves had a length
of 250 steps. In each heat bath, we use an extended confor-
mation as the initial state. The algorithm is parallelized such
that every heat bath is simulated on a separate processor. A
replica simulation demands more computational resources
than standard minimization techniques. We used a PC cluster
with 50 nodes; the simulation converged after two days. Af-
ter convergence, the time required to calculate a single struc-
ture is comparable to that needed by conventional methods.

Figure 1�a� shows the negative logarithm of the joint pos-
terior probability of all copies. After an initial convergence
phase, the composite Markov chain reaches its invariant dis-
tribution, which is indicated by a plateau. The mixing effi-
ciency of the Markov chain depends on the number of heat
baths as well as on the exchange rate between neighboring
copies. Therefore, the parameters � and q need to be chosen
carefully as they control the overlap between neighboring
posterior distributions and hence the exchange rate. Our
choice of both parameters resulted in an average exchange
rate of 70% and sufficiently large overlaps �see Fig. 1�b��.

Simulation of the full posterior p�� ,�N,�C,�N,�C� esti-
mates the unknown spectral scales and errors along with the
torsion angles. Figure 2 shows traces of the posterior
samples of the four nuisance parameters. In every instance,

FIG. 3. Posterior histograms of
conformational macrovariables
that demonstrate the equivalence
of the two simulations. Results
from the simulation of the joint
posterior density are shown as
solid curves, histograms for the
simulation of the marginal poste-
rior are shown as the gray shaded
area. Upper panels: distribution of
the statistic s��� �Eq. �11b�� for
the 13C data set �left� and for the
15N data set �right�. Lower panels:
histogram of the energy E��� �left�
and of the RMSD to the x-ray
structure �right�.
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the samples vary around their most probable value. Repre-
senting the posterior samples as histograms, we obtain uni-
modal distributions with a certain spread. The spread is a
measure for the precision of the parameter estimate and
shows that the nuisance parameters cannot be determined

from the data with absolute certainty. In both cases, the pa-
rameters used to model the 15N data have a larger spread,
which reflects the smaller size of the 15N data set compared
to the 13C data. The error �C is larger than �N, which is due
to relaxation mechanisms that affect the 13C data more than
the 15N measurements.

Figure 2 is one of our main results. It demonstrates that
the information contained in the experimental data suffices to
determine the unknowns of both the forward model and the

FIG. 4. Bundles of the 20 most likely conformations. �a� struc-
tures from the simulation of the joint posterior. �b� structure from
the simulation of the marginal posterior. The superposition and plot-
ting was carried out with the program MOLMOL �31�.

FIG. 5. Mean structures shown as MOLMOL “sausage plots.” The
thickness of the sausage indicates the precision of the coordinates.
�a� mean structure from the simulation of the full posterior.
�b� mean structure from the simulation of the marginalized
posterior.
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error model. They no longer need to be determined by em-
pirical rules or by the user. Hence, our conformational
samples are not dependent on personal beliefs, but are objec-
tive in the sense, that they exclusively reflect the information
content of the experimental data.

Simulation of the marginalized posterior p��� �13�
is equivalent to simulation of the joint posterior
p�� ,�N,�C,�N,�C�. In the first case, integration over � j and
� j is done analytically, in the latter case, by Monte Carlo
integration. This mathematical equivalence holds for any
likelihood function and prior distribution �see Eq. �6�� and is
not a consequence of the factorization of the prior distribu-
tion. Figure 3 demonstrates this equivalence. Both simula-
tions yield equivalent structures with respect to the macrova-
riables sC, sN, and E and are also in good agreement in terms
of conformational accuracy. In case of the full posterior we
obtain an expected carbon alpha root mean square distance
�RMSD� to the x-ray structure �30� of 1.01 Å with an uncer-
tainty of 0.15 Å, and for the marginal posterior a value of
1.02±0.14 Å.

From our posterior samples, we selected a set of most
likely conformations �which are members of a multidimen-
sional confidence region in conformational space�. The re-
sulting conformational bundles are shown in Fig. 4. These
bundles look similar to structure ensembles that are conven-
tionally used to represent a molecular structure determined
by NMR. However, the way we generate our structure en-
semble is fundamentally different from the standard proce-
dure. First, our ensemble is based on a closed mathematical
expression for the conformational probability distribution. In
conventional approaches structural variability expressed by
an ensemble is a result of varitions in the initial conditions
and also depends on the minimization protocol. This “opera-
tional variability” must not be confused with our statistically
rigorous definition, which is independent of the structure cal-
culation procedure. Thus, we could have used any other Mar-
kov chain Monte Carlo algorithm to calculate the structural
uncertainty, provided the algorithm is ergodic. Second, based
on the mathematical expression for the structure ensemble,
we can rigorously define what we mean by “sampling” con-
formational space. Here, we sample conformational space by
generating a sequence of random conformations that are dis-
tributed according to p���. Arbitrary “selection criteria” �6�
that minimization-based techniques require to define the en-
semble are thus superfluous.

In terms of structural quality, the most probable confor-
mation of the Tudor domain obtained by our method is com-
parable to the structure calculated by a standard minimiza-
tion method �24�. Our simulations of the full and the
marginalized posterior yield both identical mean structures
and an identical structural uncertainty �Fig. 5�, which again
illustrates the equivalence of the two procedures. We can
directly estimate the conformational precision by the stan-
dard deviation of the posterior samples, as we would do for
any parameter that is determined from experimental data.
The atom-wise error bars are exclusively determined by the
experimental data and by the assumptions required for data

analysis �which are basically the choice of the forward model
and of the error model�. Since nuisance parameters are esti-
mated along with the atomic coordinates, our estimate of
structural precision is unbiased and objective.

VII. CONCLUSIONS

Bayesian probability theory is well-suited to formalize
and solve macromolecular structure determination problems.
We demonstrated that a full Bayesian analysis of NMR data
is feasible by means of Markov chain Monte Carlo sampling,
which enables reconstruction of the molecular structure of
medium-sized proteins. We devised a prior and a likelihood
for experimental data obtained from NOESY experiments.
However, the approach is completely general and extensible
to more complex data and theories. Bayes’ theorem com-
bines the prior and the likelihood into the conformational
posterior distribution which provides an unbiased represen-
tation of our uncertainty about the true molecular structure.
Hence, we calculate the uncertainty of a structure on the
basis of a mathematically closed expression and therefore
strictly separate algorithmic issues from data modeling. In
contrast, the precision of the atomic coordinates calculated
by conventional methods largely depends on the properties
of the minimization protocol used to generate the structure
ensemble and on choices in data treatment prior to structure
calculation.

A major advantage of the Bayesian approach over
optimization-based techniques is its ability to cope with nui-
sance parameters. Standard techniques do not provide effi-
cient methods for obtaining optimal values, in particular not
in the case of multiple nuisance parameters. In our approach
auxiliary quantities need not be chosen empirically but can
be estimated along with the atomic coordinates. Moreover,
the precision of all hypothesis parameters is obtained. That
way, it is possible to provide an objective measure of preci-
sion for NMR structures.

In case of large data sets of good quality, the accuracy of
structures calculated with our method is comparable to those
calculated with standard techniques. However, test calcula-
tions with sparse data sets show that our method outperforms
standard techniques �9�.

It is straightforward to extend our models to other NMR
observables such as scalar or dipolar coupling constants. But
also other kinds of structural information could be included
in the likelihood function as, for example, diffraction data
from x-ray crystallography or information on evolutionary
relatedness of proteins. A refinement of the conformational
prior density would make use of a more realistic force field
but should also exploit the knowledge deposited in the struc-
ture data bases.

Twenty years ago, Jaynes �32� imagined the following
scenario: “Bayesian methods … apply also to a mass of new
problems that cannot be formulated at all in orthodox terms;
and computers are now … performing very nontrivial data
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analysis in such diverse fields as spectrum estimation, medi-
cal instrumentation, …, and what will probably become the
largest area of application, biological macromolecular struc-
ture determination.” We hope that our work heads into this
direction.
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